教师情绪智能识别——调整教学策略,提高教学质量!【一键运行】
本项目旨在借助神经网络技术构建教师课堂情绪识别系统,以提升教学质量。数据集含7种人脸表情的jpg图片,训练集28204张、测试集7054张。通过数据预处理、搭建RepVGG模型、训练及预测等步骤,实现对教师情绪的识别,进而辅助调整教学策略。

一. 项目背景一键运行
在现代教育体系中,教学质量是教师和学生共同关注的核心议题。教师作为知识的传授者和课堂的主导者,其情绪状态不仅直接影响到自身的教学热情和动力,更对学生的学习态度、课堂氛围以及最终的教学效果产生深远影响。然而,传统的教学评估方式往往侧重于知识传授的效果和学生的学习成绩,而忽视了教师在教学过程中的情绪变化及其对教学质量的潜在影响。
近年来,随着人工智能技术的飞速发展,特别是神经网络技术在图像识别、自然语言处理等领域的广泛应用,为教育领域带来了前所未有的变革机遇。神经网络技术以其强大的数据处理能力和模式识别能力,为教育数据的深度挖掘和智能分析提供了强有力的技术支持。在此背景下,开发一种能够实时、准确地识别教师课堂情绪状态的智能系统显得尤为重要。
本项目旨在通过运用先进的神经网络技术,构建一套“教师课堂情绪识别系统”。该系统能够自动捕捉并分析教师的面部表情特征,实时识别出教师的情绪状态(如高兴、平静、沮丧等),并基于这些情绪状态为教师提供个性化的教学策略调整建议。通过这样的智能辅助工具,教师可以更加直观地了解自己在课堂上的情绪表现,及时发现问题并进行调整,从而提升自身的教学能力,营造更加积极、高效的课堂氛围,最终实现教学质量的全面提升。
二. 数据集介绍数据集简介:数据集中包含了7种人脸面部表情,图片为jpg格式。
三. 代码实现 3.1. 解压数据集In [1]%%capture!unzip /home/aistudio/data/data293196/expression.zip -d /home/aistudio/登录后复制 3.2. 数据预处理In [2]
import paddlefrom paddle.vision.datasets import DatasetFolderfrom paddle.vision import transforms# 定义训练集的数据增强和数据处理方式train_transform=transforms.Compose([transforms.ColorJitter(brightness=0.2), transforms.Resize(128), transforms.RandomHorizontalFlip(prob=0.5), transforms.RandomRotation(degrees=7), transforms.ToTensor(data_format='CHW'), transforms.Normalize(mean=0.0, std=1.0, data_format='CHW')])train_dataset=DatasetFolder(root="/home/aistudio/expression/train",transform=train_transform)# 定义测试集的数据处理方test_transform=transforms.Compose([transforms.Resize(128), transforms.ToTensor(data_format='CHW'), transforms.Normalize(mean=0.0, std=1.0, data_format='CHW')])test_dataset=DatasetFolder(root="/home/aistudio/expression/test",transform=test_transform)print(f"训练集共有图片:{train_dataset.__len__()}张")print(f"测试集共有图片:{test_dataset.__len__()}张")print(f"总计有图片:{train_dataset.__len__()+test_dataset.__len__()}张")登录后复制 训练集共有图片:28204张测试集共有图片:7054张总计有图片:35258张登录后复制 3.3.模型搭建In [1]
import paddleimport paddle.nn as nnfrom paddle.optimizer.lr import CosineAnnealingDecayfrom paddle.optimizer import AdamW登录后复制 In [7]
import warnings warnings.filterwarnings("ignore")def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): result = paddle.nn.Sequential( ('conv',nn.Conv2D(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias_attr=False)), ('bn',nn.BatchNorm2D(num_features=out_channels)) ) return result# 构建RepVGGBlock模块class RepVGGBlock(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False): super(RepVGGBlock, self).__init__() self.deploy = deploy # deploy是推理部署的意思 self.groups = groups # 输入的特征层分为几组,这是分组卷积概念,单卡GPU不用考虑,默认为1,分组卷积概念详见下面 self.in_channels = in_channels # 输入通道 assert kernel_size == 3 assert padding == 1 # 为什么这么设置呢,图像padding=1后经过 3x3 卷积之后图像大小不变 padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.ReLU() if deploy: self.rbr_reparam = nn.Conv2D(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias_attr=True, padding_mode=padding_mode) # 定义推理模型时,基本block就是一个简单的 conv2D else: self.rbr_identity = nn.BatchNorm2D(num_features=in_channels) if out_channels == in_channels and stride == 1 else None # 直接连接,类似resnet残差连接,注意当输入通道和输出通道不同时候,只有 1x1 和 3x3 卷积,没有identity,下面网络图自己体会 self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) #3x3卷积+BN self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) #1x1卷积+BN def forward(self, inputs): if hasattr(self, 'rbr_reparam'): return self.nonlinearity(self.rbr_reparam(inputs)) # 推理阶段, conv2D 后 ReLU if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out) # 训练阶段,3x3、1x1、identity 相加后 ReLU def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) # 卷积核两个参数 W 和 b 提出来 kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) # 为啥可以提出两个参数,看论文公式 return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1,1,1,1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 # 当branch不是3x3、1x1、BN,那就返回 W=0, b=0 if isinstance(branch, nn.Sequential): kernel = branch.conv.weight # conv权重 running_mean = branch.bn._mean # BN mean running_var = branch.bn._variance # BN var gamma = branch.bn.weight # BN γ beta = branch.bn.bias # BN β eps = branch.bn._epsilon # 防止分母为0 # 当branch是3x3、1x1时候,返回以上数据,为后面做融合 else: assert isinstance(branch, nn.BatchNorm2D) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups # 通道分组,单个GPU不用考虑,详情去搜索分组卷积 kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) # 定义新的3x3卷积核,参数为0,这里用到DepthWise,详情去搜索MobileNetV1 # 这部分看后面讲解 for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 # 将卷积核对角线部分赋予1 self.id_tensor = paddle.to_tensor(kernel_value) kernel = self.id_tensor # conv权重 running_mean = branch._mean # BN mean running_var = branch._variance # BN var gamma = branch.weight # BN γ beta = branch.bias # BN β eps = branch._epsilon # 防止分母为0 std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) return kernel * t, beta - running_mean * gamma / std def repvgg_convert(self): kernel, bias = self.get_equivalent_kernel_bias() return kernel.numpy(), bias.numpy()# 构建RepVGGBlock模块class RepVGGBlock(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False): super(RepVGGBlock, self).__init__() self.deploy = deploy # deploy是推理部署的意思 self.groups = groups # 输入的特征层分为几组,这是分组卷积概念,单卡GPU不用考虑,默认为1,分组卷积概念详见下面 self.in_channels = in_channels # 输入通道 assert kernel_size == 3 assert padding == 1 # 为什么这么设置呢,图像padding=1后经过 3x3 卷积之后图像大小不变 padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.ReLU() if deploy: self.rbr_reparam = nn.Conv2D(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias_attr=True, padding_mode=padding_mode) # 定义推理模型时,基本block就是一个简单的 conv2D else: self.rbr_identity = nn.BatchNorm2D(num_features=in_channels) if out_channels == in_channels and stride == 1 else None # 直接连接,类似resnet残差连接,注意当输入通道和输出通道不同时候,只有 1x1 和 3x3 卷积,没有identity,下面网络图自己体会 self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) #3x3卷积+BN self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) #1x1卷积+BN def forward(self, inputs): if hasattr(self, 'rbr_reparam'): return self.nonlinearity(self.rbr_reparam(inputs)) # 推理阶段, conv2D 后 ReLU if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out) # 训练阶段,3x3、1x1、identity 相加后 ReLU def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) # 卷积核两个参数 W 和 b 提出来 kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) # 为啥可以提出两个参数,看论文公式 return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1,1,1,1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 # 当branch不是3x3、1x1、BN,那就返回 W=0, b=0 if isinstance(branch, nn.Sequential): kernel = branch.conv.weight # conv权重 running_mean = branch.bn._mean # BN mean running_var = branch.bn._variance # BN var gamma = branch.bn.weight # BN γ beta = branch.bn.bias # BN β eps = branch.bn._epsilon # 防止分母为0 # 当branch是3x3、1x1时候,返回以上数据,为后面做融合 else: assert isinstance(branch, nn.BatchNorm2D) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups # 通道分组,单个GPU不用考虑,详情去搜索分组卷积 kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) # 定义新的3x3卷积核,参数为0,这里用到DepthWise,详情去搜索MobileNetV1 # 这部分看后面讲解 for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 # 将卷积核对角线部分赋予1 self.id_tensor = paddle.to_tensor(kernel_value) kernel = self.id_tensor # conv权重 running_mean = branch._mean # BN mean running_var = branch._variance # BN var gamma = branch.weight # BN γ beta = branch.bias # BN β eps = branch._epsilon # 防止分母为0 # 当branch是 identity,也即只有BN时候返回以上数据 std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) # 提取W、b,不管你是 3x3 1x1 identity都要提取 return kernel * t, beta - running_mean * gamma / std def repvgg_convert(self): kernel, bias = self.get_equivalent_kernel_bias() return kernel.numpy(), bias.numpy()class RepVGG(nn.Layer): def __init__(self, num_blocks, num_classes=1000, width_multiplier=None, override_groups_map=None, deploy=False): super(RepVGG, self).__init__() assert len(width_multiplier) == 4 # 江湖人称瘦身因子,减小网络的宽度,就是输出通道乘以权重变小还是变大 self.deploy = deploy self.override_groups_map = override_groups_map or dict() # 这部分是分组卷积,单个GPU不用考虑 assert 0 not in self.override_groups_map self.in_planes = min(64, int(64 * width_multiplier[0])) self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1, deploy=self.deploy) self.cur_layer_idx = 1 # 分组卷积 self.stage1 = self._make_stage(int(64 * width_multiplier[0]), num_blocks[0], stride=2) self.stage2 = self._make_stage(int(128 * width_multiplier[1]), num_blocks[1], stride=2) self.stage3 = self._make_stage(int(256 * width_multiplier[2]), num_blocks[2], stride=2) self.stage4 = self._make_stage(int(512 * width_multiplier[3]), num_blocks[3], stride=2) self.gap = nn.AdaptiveAvgPool2D(output_size=1) # 全局池化,变成 Nx1x1(CxHxW),类似 flatten self.linear = nn.Linear(int(512 * width_multiplier[3]), num_classes) def _make_stage(self, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) blocks = [] for stride in strides: cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1) # 分组卷积 blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3, stride=stride, padding=1, groups=cur_groups, deploy=self.deploy)) self.in_planes = planes self.cur_layer_idx += 1 return nn.Sequential(*blocks) def forward(self, x): out = self.stage0(x) out = self.stage1(out) out = self.stage2(out) out = self.stage3(out) out = self.stage4(out) out = self.gap(out) out = paddle.flatten(out,start_axis=1) out = self.linear(out) return outdef create_RepVGG_B2(deploy=False,num_classes=7): return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=num_classes, width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, deploy=deploy)model=create_RepVGG_B2(num_classes=7)登录后复制 In [12]import warnings warnings.filterwarnings("ignore")paddle.jit.save(model, '/home/aistudio/work/repvgg', [paddle.static.InputSpec([-1,3,128,128])])登录后复制 3.4.模型训练In [13]model=paddle.Model(model)scheduler = CosineAnnealingDecay( learning_rate=0.01, T_max=80,) # 定义学习率衰减器opti = AdamW( learning_rate=scheduler, parameters=model.parameters(), weight_decay=1e-5) # 定义Adam优化器model.prepare(optimizer=opti,loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())登录后复制 In [ ]
callback = paddle.callbacks.VisualDL(log_dir='work/log_dir')model.fit(train_data=train_dataset, # 指定训练集 eval_data=test_dataset, # 指定验证集 batch_size=256, # 一次性读取样本数 epochs=80, # 总共训练的轮数 eval_freq=1, # 每隔1轮测试一次 verbose=1, # 输出级别 save_dir="work/output/", # 权重等文件保存地址 num_workers=6, # 多线程用于加快数据读取 callbacks=[callback]) # 将VisualDL指定进去登录后复制 3.5.模型预测、结果可视化In [18]
model=create_RepVGG_B2(num_classes=7)登录后复制 In [23]
import cv2import paddlefrom paddle.vision import transformsimport matplotlib.pyplot as pltlabel={0:'anger',1:'disgust',2:'fear',3:'happy',4:'sad',5:'surprised',6:'normal'}# 加载训练好的权重文件,该网络已经具备表情识别的能力best_model_path = "/home/aistudio/work/output/final.pdparams"para_state_dict = paddle.load(best_model_path)model.eval() # 测试时要设置eval模式model.set_state_dict(para_state_dict)# 加载一张图片并进行预处理img=cv2.imread("/home/aistudio/2.png")img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # cv2默认是BGR模式img=cv2.resize(img,(128,128)) input_tensor=transforms.to_tensor(img, data_format='CHW') # 转为paddle.tensor类型input_tensor=paddle.unsqueeze(input_tensor,axis=0) #因为输出shape应为(b,c,h,w),而现在是(c,h,w),所以升维变成(1,c,h,w)从而符合模型的输入格式# 推理图片获取识别结果test_result = model(input_tensor) # 输出会给出7个类的概率值,而最大值所在的类就是预测结果max_prob_index=paddle.argmax(test_result[0])# 展示图片和预测结果plt.figure()plt.title('predict: {}'.format(label[int(max_prob_index)]))plt.imshow(img)plt.show()登录后复制 <Figure size 640x480 with 1 Axes>登录后复制
以上就是教师情绪智能识别——调整教学策略,提高教学质量!【一键运行】的详细内容,更多请关注乐哥常识网其它相关文章!
